A cooperative allylic fluorination: combination of nucleophilic and electrophilic fluorine sources

Steven Bloom, James Levi Knippel, Maxwell Gargiulo Holl, Ross Barber, Thomas Lectka

Department of Chemistry, New Chemistry Building, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States

Abstract

A one step, regioselective allylic fluorination of alkenes is reported in which electrophilic and nucleophilic sources of fluorine act synergistically to afford rearranged allylic fluorides over alternative vicinal dialkylides. The reaction occurs under exceptionally mild conditions and without need for prefunctionalization or transition metal catalysts. The fluorination of cyclic alkenes and monoterpenes is highlighted, and preliminary mechanistic experiments reveal that dual (radical and ionic) pathways operate simultaneously.

Introduction

The selective incorporation of fluorine has become a powerful strategy in the optimization of pharmaceuticals,1 agrochemicals,2 and performance materials.3 The unique properties of the fluorine atom make it an ideal bioisostere for hydrogen or oxygen, while imparting a unique set of physical and chemical properties onto the parent molecule.4 For instance, substitution of a single C–H bond with fluorine has been shown to enhance membrane permeability, metabolic stability, and binding affinities of potential drug candidates, among other notable features.5

In addition, the 18F radioisotope is ideally suited for use in positron emission tomography (PET) imaging due to its low-energy emission, ease of preparation from [18O] water, and appreciable half-life.6 Accordingly, methods for the direct conversion of C–H to C–F bonds are of high synthetic value. While preparative methods for aryl fluorides7 and α-fluorocarbonyl compounds8 have advanced dramatically over the last decade, methods for the synthesis of allylic fluorides also remain in considerable demand. The allyl fluoride moiety is found in a variety of medicines and agrochemicals from common insecticides and herbicides to synthetically complex prostanoid analogues (Fig. 1).9 In addition to these cases, allylic fluorides serve as versatile building blocks in the construction of various fluorinated compounds.

Of the methods currently available for allylic fluorination, the majority have necessarily involved nucleophilic fluorination mediated by transition metal catalysts.10 Terminal and electron rich olefins react quite efficiently, whereas cyclic and aliphatic alkenes afford only trace to moderate yields of fluorinated products. It was our interest to devise a complementary system for the fluorination of unactivated cyclic and acyclic olefins under mild conditions in part to address the cyclic olefin problem. Previously, it has been reported that the use of ambiphilic fluorinating agents, or a combination of appropriate electrophilic and nucleophilic sources of fluorine, may be used to afford vicinal difluorides in excellent yields and selectivities from the starting alkene.11

Figure 1. Allylic fluorides in medicine.
We envisaged a bicomponent system utilizing both fluorination strategies in which electrophilic addition is accompanied by an oxidative elimination rather than nucleophilic trapping with fluoride to yield allylic products instead of a vicinal dihalide. Toward this effort, it is well documented that PhSeF, generated in situ by the reaction of phenylselenyl chloride with silver(I) fluoride, adds regioselectively to alkenes to afford β-fluoro phenylselenides. Moreover, electrophilic N–F reagents have been shown to oxidize both sulfur and selenium efficiently, often promoting their substitution or elimination with various nucleophiles and bases. We surmised that the combination of PhSeF and an appropriate N–F reagent could be used in tandem to yield allylic fluorides from alkenes in a single reaction. It was our idea to employ a tandem fluoroselenation–deselenation process mediated by phenylselenium fluoride and an electrophilic fluorinating agent, N-fluoropyridinium tetrafluoroborate (NFPyBF₄), for the allylic fluorination of alkenes in a single reaction vessel without need for purification of the intermediate β-fluoroselenide (Scheme 1). This method proved not only to be fairly general in scope, but highlights the ability of both nucleophilic and electrophilic sources of fluorine to operate synergistically to afford a rearranged allylic fluoride over the alternative vicinal difluoride.

Until recently, the synthesis of allylic fluorides has often relied heavily on the dehydroxylation of alcohols with (diethylamino)sulfur trifluoride or nucleophilic fluorination of preassembled allylic halides, p-nitrobenzoates, trichloroacetimidates, and phosphorothioates catalyzed by an array of transition metals, most notably Pd, Ir, and Cu. However, these and corresponding methods often suffer from poor regioselectivity and narrow substrate scope, especially in the way of unactivated or sp²-rich cyclic alkenes. Earlier this year, Doyle et al. reported the first account of a direct allylic C–H fluorination of olefins using an electrophilic Pd(II)-sulfoxide catalyst, benzoquinone as oxidant, the Lewis acid (salen)CrCl, and Et₃N·3HF as a stoichiometric fluoride source. Recently, our lab has undertaken an interest in the design of novel C–H to C–F bond-forming reactions. Most notably, we and others have developed methods for the direct fluorination of aliphatic and benzyl C–H bonds employing common, naturally abundant carbocation chemistry, the Lewis acid catalyst, and fluorides based on the literature precedent. We found that use of AgF (3.0 equiv), PhSeCl (1.2 equiv) and non-substituted benzotrifluoride as an internal standard.

Results and discussion

To begin our studies, we selected the aliphatic alkene cyclododecene as a prototypical substrate. During our initial screening, we surveyed a number of electrophilic N–F reagents for reactivity including N-fluorobenzensulfonylamine (NFSI), Selectfluor, p-toluenesulfonylfluoride (TsF), and N-fluoropyridinium tetrafluoroborate in combination with cyclododecene, PhSeCl, and silver(I) fluoride in CH₂Cl₂ (Table 1). Among these reagents, NFPyBF₄ performed most admirably, yielding 1-fluoro-2-cyclododecene in 71% yield after 24 h.

<table>
<thead>
<tr>
<th>F⁻</th>
<th>F⁺</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEt₃·3HF</td>
<td>Selectfluor</td>
<td>0</td>
</tr>
<tr>
<td>Py·HF</td>
<td>Selectfluor</td>
<td>0</td>
</tr>
<tr>
<td>TBAF</td>
<td>Selectfluor</td>
<td>0</td>
</tr>
<tr>
<td>Xantfluor</td>
<td>Selectfluor</td>
<td>0</td>
</tr>
<tr>
<td>DAST</td>
<td>Selectfluor</td>
<td>14</td>
</tr>
<tr>
<td>AgF</td>
<td>Selectfluor</td>
<td>27</td>
</tr>
<tr>
<td>AgF</td>
<td>NFSI</td>
<td>0</td>
</tr>
<tr>
<td>AgF</td>
<td>TsF</td>
<td>0</td>
</tr>
<tr>
<td>AgF</td>
<td>NFPyBF₄</td>
<td>71</td>
</tr>
</tbody>
</table>

Reactions were performed with PhSeCl (1.2 equiv), F⁻ (2.2 equiv) and F⁺ (3.0 equiv) in CH₂Cl₂ (3 ml) over 24 h. Yields were determined by ¹⁹F NMR using 3-chlorobenzotrifluoride as an internal standard.

Note that the use of other nucleophilic fluoride sources failed to give any appreciable amount of the fluorinated product. Unsurprisingly, in the absence of AgF, NFPyBF₄, or PhSeCl, no fluorinated products were observed. Attempts to optimize our system found that use of AgF (3.0 equiv), PhSeCl (1.2 equiv) and non-substituted NFPyBF₄ (2.2 equiv) in DCM provided the best results. Moving forward, we decided to screen a host of alkenes to assess the scope of our reaction. Gratifyingly, cyclic, branched, and linear alkenes were found to possess requisite reactivity, affording fluorinated products in good to excellent yields and in outstanding regioselectivity (Table 2).

| Scheme 1. Proposed pathway for allylic fluorination.

In the case of 1,5-p-nitrobenzoates, monofluorination is preferred (of particular significance in the case of diene and halogenations as well as aminations by catalytic PhSeCl have been reported.

| Table 1 Screening of reaction conditions |

Unfortunately, the tertiary fluorides proved less amenable to deselenation, instead affording β-fluorophenylselenides predominantly. In such instances, we screened a host of conditions in the way of temperature, additive bases, Lewis acid catalysts, and co-oxidants in the hope of improving conversions to the appropriate allylic fluorides. Unfortunately, altering the reaction conditions resulted in either diminished yields or the appearance of several unidentified byproducts.

Investigating further, we next examined monoterpene as potential candidates for allylic fluorination. Isoprene-derived substrates are often valuable precursors in the biosynthesis of other, higher-order products and have found considerable applications as both flavor additives and fragrance enhancers. We found that reaction of the hemiterpene in standard fluorination conditions afforded the tertiary fluoride in 55% yield by ¹⁹F NMR. Fortuitously, pthalimide and biologically active citronellol benzoate performed equally as well.

Unfortunately, the tertiary fluorides 6b, 8b, and 10b improved difficult to isolate by conventional methods (column chromatography on silica gel or Florisil); polymerization and/or decomposition was observed. Nevertheless, the reaction proceeded with excellent regioselectivity. In the case of 9 and 11, diminished yields of 9b and 11b may likewise be attributed to the instability of allylbenzyl fluorides based on the literature precedent.
Finally, we decided to undertake some preliminary mechanistic experiments. A reasonable place to start would be to assess the involvement of radicals—or equally likely—the participation of ionic intermediates (Fig. 2). In doing so, we sought the use of a vicinal dideuterated cycloalkene, d2-1,2-cyclooctene 12, as a mechanistic probe. If the reaction was to involve allylic radicals, we should obtain a mixture of labeled fluorides 13 and 14. In contrast, if the reaction proceeds by a purely electrophilic pathway, that is, involving the formation of ionic intermediates, only 14 is expected. The identity of these products may readily be determined from a combination of 2H NMR and 19F NMR analyses. Experimentally, subjection of 12 to our reaction conditions provided a mixture of
fluoroalkenes 13 and 14 in a ~1:4 ratio suggesting the formation of radicals during the reaction. Perhaps the participation of radicals may be used to explain products such as 5b, as they are unlikely to be formed from a solely electrophilic pathway. For example, hydrogen atom abstraction from diene 5 to furnish the putative allylic radical followed by trapping with fluorine could conceivably lead to a mixture of allylic fluorides. We postulate that the formation of radicals may be due to a high-valent silver fluoride generated in situ, as they are known to participate in radical-based fluorinations. In the presence of only silver(I) fluoride, we found that trace quantities of 3b could be prepared from the starting alkene; further investigation regarding this finding will be conducted in the near future.

As a final point of interest, we wanted to examine if β-fluoroselenoalkenes could be directly converted to allylic fluorides through reaction with NFPyBF₄, perhaps offering an explanation for the noted preference of 14 in our labeling study. To do so, β-fluoroselenoalkene (2-fluorocyclooctyl) phenylselenenane was first prepared in situ by the reaction of cis-cyclooctene with silver(I) fluoride (3.0 equiv) and phenylselenyl chloride (1.2 equiv) in CH₂Cl₂. After stirring for 1 h, a crude 19F NMR of the reaction mixture was obtained followed by the addition of NFPyBF₄ (2.2 equiv). At this point, the reaction mixture was stirred for an additional 1 h, after which a second 19F NMR spectrum was collected. Upon analysis, we found that after 1 h, in the absence of our electrophilic fluorinating reagent, no allylic products were evident. Instead, exclusive formation of the fluoroselenoamide was observed in 12% yield. However, the inclusion of NFPyBF₄ resulted in a mixture of allylic fluoride (8%), fluoro-selenoselenoalkene (36%) along with a considerable buildup of HF. Clearly, NFPyBF₄ is needed for product formation. In line with our findings, we propose the following tentative mechanism for the preponderant ionic pathway of the reaction (Scheme 2): (1) in situ formation of phenylselenyl fluoride (PhSeF); (2) electrophilic addition of PhSeF to the alkene; (3) oxidation of selenium by NFPyBF₄; and (4) elimination of phenylselenyl fluoride to give the allylic fluoride.

Conclusion

A mild, cooperative protocol for the regioselective allylic fluorination of alkenes has been developed utilizing both electrophilic and nucleophilic sources of fluoride. This new system provides ready access to allylic fluorides over a precedent background vinylic difluoride. Preliminary mechanistic evidence suggests the involvement of both carbocations and radicals in the reaction, although their exact roles are not yet known. Continued efforts to discern the precise mechanism of this new reaction will be made, in addition to the search for new applications of our system to chemical synthesis and the construction of complex fluorinated molecules.

Acknowledgments

T.L. thanks the NSF (CHE 1152996) for a grant. S.B. thanks John Hopkins for a Gary H. Posner Fellowship.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.05.093.